文章
  • 文章
  • 视频
搜索
首页 >> 原辅材料 >>刀具 >> 如何从根本上解决刀具破损、磨损、崩刃
详细内容

如何从根本上解决刀具破损、磨损、崩刃

一、刀具破损的表现


1) 切削刃微崩

当工件材料组织、硬度、余量不均匀,前角偏大导致切削刃强度偏低,工艺系统刚性不足产生振动,或进行断续切削,刃磨质量欠佳时,切削刃容易发生微崩,即刃区出现微小的崩落、缺口或剥落。出现这种情况后,刀具将失去一部分切削能力,但还能继续工作。继续切削中,刃区损坏部分可能迅速扩大,导致更大的破损。


2) 切削刃或刀尖崩碎

这种破损方式常在比造成切削刃微崩更为恶劣的切削条件下产生,或者是微崩的进一步的发展。崩碎的尺寸和范围都比微崩大,使刀具完全丧失切削能力,而不得不终止工作。刀尖崩碎的情况常称为掉尖。


3) 刀片或刀具折断

当切削条件极为恶劣,切削用量过大,有冲击载荷,刀片或刀具材料中有微裂,由于焊接、刃磨在刀片中存在残余应力时,加上操作不慎等因素,可能造成刀片或刀具产生折断。发生这种破损形式后,刀具不能继续使用,以致报废。


4) 刀片表层剥落

对于脆性很大的材料,如TiC含量很高的硬质合金、陶瓷、PCBN等,由于表层组织中有缺陷或潜在裂纹,或由于焊接、刃磨而使表层存在着残余应力,在切削过程中不够稳定或刀具表面承受交变接触应力时极易产生表层剥落。剥落可能发生在前刀面,刀可能发生在后刀面,剥落物呈片状,剥落面积较大。涂层刀具剥落可能性较大。刀片轻微剥落后,尚能继续工作,严重剥落后将丧失切削能力。


5) 切削部位塑性变型

具钢和高速钢由于强度小硬度低,在其切削部位可能发生塑性变型。硬质合金在高温和三向压应力状态直工作时,也会产生表层塑性流动,甚至使切削刃或刀尖发生塑性变形面造成塌陷。塌陷一般发生在切削用量较大和加工硬材料的情况下。TiC基硬质合金的弹性模量小于WC基硬质合金,故前者抗塑性变形能力加快,或迅速失效。PCD、PCBN基本不会发生塑性变形现象。


6) 刀片的热裂

当刀具承受交变的机械载荷和热负荷时,切削部分表面因反复热胀冷缩,不可避免的产生交变的热应力,从而使刀片发生疲劳而开裂。例如,硬质合金铣刀进行高速铣削时,刀齿不断受到周期性地冲击和交变热应力,而在前刀面产生梳状裂纹。有些刀具虽然并没有明显的交变载荷与交变应力,但因表层、里层温度不一致,也将产生热应力,加上刀具材料内部不可避免地存在缺陷,,故刀片也可能产生裂纹。裂纹形成后刀具有时还能继续工作一段时间,有时裂纹迅速扩展导致刀片折断或刀面严重剥落。



二、刀具磨损


1. 按磨损原因可分为


1)磨料磨损

被加工材料中常有一些硬度极高的微小颗粒,能在刀具表面划出沟纹,这就是磨料磨砂损。磨料磨损在各个面都存在,前刀面最明显。而且各种切削速度下都能发生麻料磨损,但对于低速切削时,由于切削温度较低,其它原因产生的磨损都不明显,因而磨料磨损是其主要原因。另处刀具硬度越低磨料麻损越严重。


2)冷焊磨损

切削时,工件、切削与前后刀面之间,存在很大的压力和强烈的摩擦,因而会发生冷焊。由于摩擦副之间有相对运动,冷焊将产生破裂被一方带走,从而造成冷焊磨损。冷焊磨损一般在中等切削速度下比较严重。根据实验表明,脆性金属比塑性金属的抗冷焊能力强;多相金属比单向金属小;金属化合物比单质冷焊倾向小;化学元素周期表中B族元素与铁的冷焊倾向小。高速钢与硬质合金低速切削时冷焊比较严重。

 

3)扩散磨损

在高温下切削、工件与刀具接触过程中,双方的化学元素在固态下相互扩散,改变刀具的成分结构,使刀具表层变得脆弱,加剧了刀具的磨损。扩散现象总是保持着深度梯度高的物体向深度梯度低物体持续扩散。例如硬质合金在800℃时其中的钴便迅速地扩散到切屑、工件中去,WC分解为钨和碳扩散到钢中去;PCD刀具在切削钢、铁材料时当切削温度高于800℃时,PCD中的碳原子将以很大的扩散强度转移到工件表面形成新的合金,刀具表面石墨化。钴、钨扩散比较严重,钛、钽、铌的抗扩散能力较强。故YT类硬质合金耐磨性较好。陶瓷和PCBN切削时,当温度高达1000℃-1300℃时,扩散磨损尚不显著。 工件、切屑与刀具由于材料的同,切削时在接触区将产生热电势,这种热电势有促进扩散的作用而加速刀具的磨损。这种在热电势的作用下的扩散磨损,称为“热电磨损”。


4)氧化磨损

当温度升高时刀具表面氧化产生较软的氧化物被切屑摩擦而形成的磨损称为氧化磨损。如:在700℃~800℃时空气中的氧与硬质合金中的钴及碳化物、碳化钛等发生氧化反应,形成较软的氧化物;在1000℃时PCBN与水蒸气发生化学反应。


2. 按磨损形式可分为


1)前刀面损

在以较大的速度切削塑性材料时,前刀面上靠近切削力的部位,在切屑的作用下,会磨损成月牙凹状,因此也称为月牙洼磨损。在磨损初期,刀具前角加大,使切削条件有所改善,并有利于切屑的卷曲折断,但当月牙洼进一步加大时,切削刃强度大大削弱,最终可能会造成切削刃的崩碎毁损的情况。在切削脆性材料,或以较低的切削速度及较薄的切削厚度切削塑性材料时,一般不会产生月牙洼磨损。

 

2)刀尖磨损

刀尖磨损为刀尖圆弧的后刀面及邻近的副后刀面上的磨损,它是刀具上后刀面的磨损的延续。由于此处的散热条件差,应力集中,故磨损速度要比后刀面快,有时在副后刀面上还会形成一系列间距等于进给量的小沟,称为沟纹磨损。它们主要由于已加工表面的硬化层及切削纹路造成的。在切削加工硬化倾向大的难切削材料时,最易引起沟纹磨损。刀尖磨损对工件表面粗糙度及加工精度影响最大。


3)后刀面磨损

在很大切削厚度切削塑性材料时,由于积屑瘤的存在,刀具的后刀面可能不与工件接触。除此之外,通常后刀面都会与工件发生接触,而在后刀面上形成一道后角为0的磨损带。一般在切削刃工作长度的中部,后刀面磨损比较均匀,因此后刀面的磨损程度可用该段切削刃的后刀面磨损带宽度VB来衡量。 由于各种类型的刀具在不同的切削情况下几乎都会了发生后刀面磨损,特别是切削脆性材料或以较小的切削厚度切削塑性材料时刀具的磨损主要是后刀面磨损,而且磨损带的宽度VB的测量比较简便,因此通常都用VB来表示刀具的磨损程度。VB愈大,不但会使切削力增大,引起切削振动,而且会影响刀尖圆弧处的磨损,从而影响加工精度及加工表面质量。


2. 刀具防止破损的方法


1)针对被加工材料和零件的特点,合理选择刀具材料的各类和牌号。在具备一定硬度和耐磨性的前提下,必须保证刀具材料具有必要的韧性;


2)合理选择刀具几何参数。通过调整前后角,主副偏角,刃倾角等角度;


保证切削刃和刀尖有较好的强度。在切削刃上磨出负倒棱,是防止崩刀的有效措施;


3)保证焊接和刃磨的质量,避免因焊接、刃磨不善而带来的各种疵病。关键工序所用的刀具,其刀而应经过研磨以提高表面质量,并检查有无裂纹;


4)合理选择切削用量,避免过大的切削力和过高的切削温度,以防止刀具破损;


5)尽可能保证工艺系统具有较好的刚性,减小振动;


6)采取正确的操作方法,尽量使刀具不承受或少承受突变性的负荷。


三、刀具崩刃的原因及对策


1)刀片牌号、规格选择不当,如刀片的厚度太薄或粗加工时选用了太硬太脆的牌号。


对策:

增大刀片厚度或将刀片立装,选用抗弯强度及韧性较高的牌号。


2) 刀具几何参数选择不当(如前后角过大等)。


对策:

可从以下几方面着手重新设计刀具。

① 适当减小前、后角。

② 采用较大的负刃倾角。

③ 减小主偏角。

④ 采用较大的负倒棱或刃口圆弧。

⑤ 修磨过渡切削刃,增强刀尖。


3)刀片的焊接工艺不正确,造成焊接应力过大或焊接裂缝。


对策:

①避免采用三面封闭的刀片槽结构。

②正确选用焊料。

③避免采用氧炔焰加热焊接,并且在焊接后应保温,以消除内应力。

④尽可能改用机械夹固的结构


4)刃磨方法不当,造成磨削应力及磨削裂纹;对PCBN铣刀刃磨后刀齿的振摆过大,使个别刀齿负荷过重,也会造成打刀。


对策:

①采用间断磨削或金刚石砂轮磨削。

②选用较软的砂轮,并经常修整保持砂轮锋利。

③注意刃磨质量,严格控制铣刀刀齿的振摆量。


5) 切削用量选择不合理,如用量过大,便机床闷车;断续切削时,切削速度过高,进给量过大,毛坯余量不均匀时,切削深度过小;切削高锰钢等加工硬化倾向大的材料时,进给量过小等。


对策:

重新选择切削用量。


6) 机械夹固式刀具的刀槽底面不平整或刀片伸出过长等结构上的原因。


对策:

①修整刀槽底面。

②合理布置切削液喷嘴的位置。

③淬硬刀杆在刀片下面增加硬质合金垫片。


7) 刀具磨损过度。


对策:

及时换刀或更换切削刃。


8) 切削液流量不足或加注方法不正确,造成刀片骤热而裂损。


对策:

① 加大切削液的流量。

② 合理布置切削液喷嘴的位置。

③ 采用有效的冷却方法如喷雾冷却等提高冷却效果。

④ 采用*切削减小对刀片的冲击。


9) 刀具安装不正确,如:切断车刀安装过高或过低;端面铣刀采用了不对称顺铣等。

对策:

重新安装刀具。


10) 工艺系统刚性太差,造成切削振动过大。


对策:

① 增加工件的辅助支承,提高工件装夹刚性。

② 减小刀具的悬伸长度。

③ 适当减小刀具的后角。

④ 采用其它的消振措施。


11) 操作不慎,如:刀具由工件中间切入时,动作过猛;尚未退刀,即行停车。


对策:

注意操作方法。


四、积屑瘤


1) 形成原因

在靠近切削刃的一部分,刀-屑接触区内,由于下压力很大,使切屑底层金属嵌入前刀面上的微观不平的峰谷内,形成无间隙的真正的金属间接触而产生粘结现象,这部分刀-屑接触区被称为粘结区。在粘结区内,切屑底层将有一薄层金属材料层积滞留在前刀面上,这部分切屑的金属材料经过了剧烈的变形,在适当的切削温度下发生强化。随着切屑的连续流出,在后继切削的流动所作推挤下,这层滞积材料便与切屑上层发生相对滑移而离开来,成为积屑瘤的基础。随后,在它的上面又会形成第二层滞积切削材料,这样不断地层积,就形成了积屑瘤。


2) 特点及对切削加工的影响

① 硬度比工件材料高1.5~2.0倍,可代替前刀面进行切削,有保护切削刃、减小前刀面磨损的作用,但积屑瘤脱落时的碎片流经刀具-工件接触区会造成刀具后刀面磨损。

② 在积屑瘤形成后刀具的工作前角明显增大,对减小切屑变形及降低切削力起了积极作用。

③ 由于积屑瘤突出于切削刃之外,使实际切削深度增大,影响工件的尺寸精度。

④ 积屑瘤会在工件表面造成“犁沟”现象,影响工件表面粗糙度。⑤积屑瘤的碎片会粘结或嵌入工件表面造成硬质点,影响工件已加工表面的质量。

由上述分析可知,积屑瘤对切削加工,特别对精加工是不利的。


3) 控制措施


不使切屑底层材料与前刀面发生粘结或变形强化,即可避免积屑瘤的产生为此日的可采取如下措施。


① 减小前刀面的粗糙度。

② 增大刀具的前角。

③ 减小切削厚度。

④ 采用低速切削或高速切削,避开容易形成积屑瘤的切削速度。

⑤ 对工件材料进行适当的热处理提高其硬度,减小塑性。

⑥ 采用抗粘结发性能好的切削液(如含硫、氯的极压切削液)。


文章来源:前沿数控技术


欢迎关注家居荟

长按二维码即可长期关注我们,了解更多更有用和有趣的家居知识!


最新评论
请先登录才能进行回复登录
技术支持: 家居荟二零二五 | 管理登录
seo seo